

Mathematics 1201 Common Mathematics Assessment

June 12, 2013

Name:				
Mathematics				
Teacher:		3.00	 · · · · · · · · · · · · · · · · · · ·	<u> </u>

28 Selected Response 13 Constructed Response 28 marks 42 marks

FINAL

70 Marks

FORMULAE

Surface Area

Cylinder $2\pi r^2 + 2\pi rh$	Cone $\pi r^2 + \pi rs$	Sphere $4\pi r^2$
-------------------------------	-------------------------	-------------------

Volume

Pyramid	Cone	Sphere
$\frac{1}{3}Ah$	$\frac{1}{3}\pi r^2 h$	$\frac{4}{3}\pi r^3$

Conversions

	1 foot = 12 inches 1 yard		= 3 feet	1 mile = 1760 yards
1 i	1 inch = 2.54 centimetres = 2.5 centimetres		1 m	ile = 1.6 kilometres

Selected Response:

Circle the appropriate response on the answer sheet or SCANTRON.

- 1. Which is the best referent for one centimetre?
 - (A) distance from the floor to a door knob
 - length of a five-dollar bill (B)
 - thickness of a dime (C)width of a paper clip
- 2. What is the slant height of a cone with diameter 12 mm and height 17 mm?

- 3. What is 19.75 yards in yards, feet, and inches?
 - $0.75 \times 3 = (2).25$ 19 yards, 2 feet, 3 inches (B) 19 yards, 2 feet, 6 inches
 - 19 yards, 2 feet (C)
 - (D) 19 yards, 9 inches

- 0.25 x 12 = (3)
- 4. What is the *adjacent* side to $\angle DAC$?

(D) DC

5. What is the measure of $\angle A$, to the nearest degree, if $\tan A = 0.8725$?

(A)	_34°
(B)	41°
(0)	49°
(D)	61°

6. Which ratio represents $\sin B$?

7. What is the length of side MA to the nearest tenth?

8. Simplify:

$$(A) \quad 3\sqrt[3]{4}$$

(B)
$$27\sqrt[3]{4}$$

(C)
$$6\sqrt[3]{3}$$

(D)
$$36\sqrt[3]{3}$$

- 9. Which statement is true about 3600?
 - (A) It is a perfect cube.
 - (B) Its only factors are 360 and 10.
 - (C) Its square root is an irrational number.
 - (D) Its prime factorization is $2^4 \cdot 3^2 \cdot 5^2$.
- 10. What is $\sqrt[3]{5^2}$ expressed as a power?

(A)
$$5^{-\frac{3}{2}}$$

(B)
$$5^{-\frac{2}{3}}$$

$$(C)$$
 $5^{\frac{2}{3}}$

(D)
$$5^{\frac{3}{2}}$$

11. A student did not receive full marks for her solution to the question below. In which step did she make the **first** error?

Simplify:

$$\frac{(a^{-2}b^7)^{-5}}{(a^2b^{-3})^3}$$

Solution:

$$\left(\frac{a^{-7}b^2}{a^5b^0}\right)$$

$$a^{-7-5}b^{2-0}$$

$$a^{-12}b^2$$

$$\frac{b^2}{a^{12}}$$

- (C) 3
- (D) 4

12. Which binomial product is modelled?

= negative = positive

(A)
$$(-2x+3)(-x+2)$$

(B)
$$(-2x+3)(x+2)$$

(C)
$$(2x-3)(x+2)$$

(D)
$$(2x-3)(x-2)$$

Expand and simplify: 13.

$$(a-3b)(2a-b)$$

(A)
$$2a^2 + 3b^2$$

(B)
$$3a - 4b$$

(B)
$$3a-4b$$

(C) $2a^2-7ab+3b^2$
(D) $3a^2-6ab-4b^2$

(D)
$$3a^2 - 6ab - 4b^2$$

What is the greatest common factor of $16x^2y^3$, $8x^3y^2$, and $-24x^3y^3$? 14.

$$(A) \quad 4x^2y^2$$

(B)
$$4x^3y^3$$

$$(C) 8x^2y^2$$

(D)
$$8x^3y^3$$

Factor completely: $x^2 - 6x + 5$

(A)
$$(x-1)(x-5)$$

(B) $(x-2)(x-3)$
(C) $(x-1)(x+5)$
(D) $(x+6)(x-1)$

(B)
$$(x-2)(x-3)$$

(C)
$$(x-1)(x+5)$$

(D)
$$(x+6)(x-1)$$

Factor completely: $4x^2 - 36$ 16.

(A)
$$2(2x^2-18)$$

(B)
$$4(x^2-9)$$

(B)
$$4(x^2-9)$$

(C)
$$(2x-6)(2x+6)$$

(D)
$$4(x-3)(x+3)$$

What is the missing value if the given polynomial is a perfect square trinomial? 17.

$$25x^2 + [?] + 16$$

$$25x^2 + [?] + 16$$

(A)
$$9x$$

(B)
$$18x$$

(C)
$$20x$$

$$(D)$$
 $40x$

- 18. If the amount of gas remaining in your gas tank is affected by the distance travelled, what is the dependent variable?
 - (A) the amount of gas in your tank
 - (B) the amount of time
 - (C) the cost of gas
 - (D) the distance travelled
- 19. Which set of ordered pairs represents a function?
 - (A) {(-3,-8), (-1,-7), (-2,-6), (-1,-5)}
 - (B) (-8,0), (-6,5), (4,-1), (7,0)
 - (C) $\{(4,1), (4,2), (3,4), (4,4)\}$
 - (D) $\{(2,5), (3,8), (4,11), (2,1)\}$
- 20. The graph describes Mackenzie's activity during a bike ride. What does segment EF represent?

- (A) Mackenzie stops at a friend's house.
- (B) Mackenzie rides downhill.
- (C) __Mackenzie leaves home.
- (D) Mackenzie returns home.
- 21. What is the domain of the function shown?

- (B) $\{x \mid -3 \le x \le 3, x \in \mathbb{R}\}$
- (C) $\{y \mid 0 \le y \le 3, y \in \mathbb{R}\}$
- (D) $\{y \mid -3 < y \le 0, y \in \mathbb{R}\}$

22. What is the rate of change in the given table?

((A)	1
(5
(B)	1

- (B) $\frac{1}{2}$
- (C) 2
- (D) 5

	d	C(d)			
10/	0	75	>+2		
107	10	77	/ ' -		
	20	79			
	30	81	2		ı
	40	83	2	=	ىلىـ ك
			10		3

What is the equation of the line graphed? 23.

- (D)
- What is the slope of a line **perpendicular** to $y = -\frac{1}{7}x + 5$? 24.
 - (A)
 - (B)
 - (C)
 - (D)
- What is the equation of the line, in slope-point form, that has slope $\frac{4}{5}$, and passes 25. through the point (9, -1)?
 - (A) $y-1=\frac{4}{5}(x+9)$

 - (B) $y-1 = \frac{5}{4}(x+9)$ (C) $y+1 = \frac{4}{5}(x-9)$ (D) $y+1 = \frac{5}{4}(x-9)$
- What is the expression for the slope between points (a, b) and (c, d)? 26.
 - (A)
 - (B)
 - (C)
 - (D)

27. Which system models the given situation?

A collection of nickels (n) and dimes (d) contains four times as many dimes as nickels. The total value of the collection is \$20.25.

(A)
$$\begin{cases} d = 4n \\ 0.05d + 0.10n = 20.25 \end{cases}$$
(B)
$$\begin{cases} d = 4n \\ 0.10d + 0.05n = 20.25 \end{cases}$$

(C)
$$\begin{cases} n = 4d \\ 0.05n + 0.10d = 20.25 \end{cases}$$

(D)
$$\begin{cases} n = 4d \\ 0.10n + 0.05d = 20.25 \end{cases}$$

28. How many solutions does the given system have?

$$y = \frac{4}{6}x + 8$$

$$y = \frac{2}{3}x + 8$$

$$y = \frac{2}{3}x + 8$$
parallel

(A)	none
(B)	one

⁽C) two

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.

29. A shed is constructed by using a rectangular prism for the walls with a triangular prism for the roof. Determine the surface area of the shed to the nearest square foot. (Do not include the shed floor.)

[4 points]

$$3^{2}+4^{2}=\chi^{2}$$

$$35=\chi^{2}$$

$$5=\chi$$

Rectangular

Front =
$$6 \times 8 = 48$$

Bock = 48

Right = $10 \times 8 = 80$

Left = 80

Lett = 80

Triangular

Front =
$$\frac{b \times h}{2} = \frac{6 \times 4}{2} = 12$$

Back = 12

① Back =
$$12$$

Right = $10 \times 5 = 50$
Left = 50

①
$$SA = 2(48) + 2(80) + 2(12) + 2(50) = 380 ft^2$$

⁽D) infinite

Mathematics 1201 Common Mathematics Assessment - June 2013

30. A right square pyramid has a volume of $182.4 cm^3$. Determine the side length of its base to the nearest cm.

[2 points]

$$V = \lim_{3} \frac{182.4}{3} = \frac{2 \cdot 2 \cdot 15.2}{3^{2}} \left(\frac{1}{2}\right)$$

$$3 \cdot \frac{182.4}{15.2} = 2^{2} \left(\frac{1}{2}\right)$$

$$36 = 2^{2} \left(\frac{1}{2}\right)$$

$$\sqrt{36} = 2^{2} \left(\frac{1}{2}\right)$$

$$6 = 2^{2} \left(\frac{1}{2}\right)$$

From the top of a 50 m building, an observer spots two joggers. The first jogger is at [4 points] an angle of depression of 45° and the second is at an angle of depression of 30°. How far apart (to the nearest tenth of a metre) are the two joggers?

Distance between joggers is 86.6-50 $= 36.6 \, \mathrm{m}$

$$tan 450 = 50$$

$$\tan 30^\circ = \frac{50}{y}$$

$$\chi = \frac{50}{\tan 45^{\circ}} = \frac{50}{2}$$

$$y = \frac{50}{\tan 30^{\circ}} = 86.6 \frac{1}{2}$$

32. A polling organization uses the telephone book to randomly select people for a survey. They choose every 20th person to ask question #1, every 28th person to ask question #2, and every 30th person to ask question #3. In which position in the phone book is the first person to be asked all three questions?

[3 points]

$$LCM = 2^{2}.5.7.3 = 420 \text{ }$$

The 420th person is the first one to be asked all 3 questions.

Page 8 of 11

Mathematics 1201 Common Mathematics Assessment – June 2013

33. The area of a square is $121x^4y^2$. What is the expression for the perimeter of the square?

[2 points]

34. Simplify: $\left(\frac{-54x^6y}{2x^{-3}y^4}\right)^{\frac{4}{3}}$

[4 points]

$$\begin{cases} = (-27x^{6-3}y^{1-4})^{\frac{4}{3}} \\ = (-27x^{9}y^{-3})^{\frac{4}{3}} \end{cases}$$

$$0 = (3\sqrt{-27})^{4} (x^{12}) (y^{-4})$$

$$(\frac{1}{2}) = (-3)^4 \times ^{12} y^{-4} = (\frac{81 \times ^{12}}{y^{+4}})^{(\frac{1}{2})}$$

35. Expand and simplify:

$$(2x-5)(x+7)^2$$

[3 points]

$$\begin{cases} = (2x-5)(x^2+7x+7x+49) \\ = (2x-5)(x^2+14x+49) \end{cases}$$

36. Determine the expression, in simplest form, for the area of the shaded region:

[3 points]

2x + 1

Rect. Area =
$$(3x-2)(3x+1) = 6x^2 + 3x - 4x - 2$$

Square Area = $(x+4)(x+4)^2 = x^2 + 4x + 4x + 16$
= $x^2 + 8x + 16$

Shaded Area =
$$(6x^2-x-2)-(x^2+8x+16)=\overline{(5x^2-9x-18)}$$

Mathematics 1201 Common Mathematics Assessment - June 2013

17. Factor completely:
$$5x^2 - 9x - 18$$
 $+ \otimes$ $-9 - 90$ $(5x^2 - 15x) + (6x - 18)$ $-15, 6$ 0 7 $(3x - 3) + 6(x - 3)$ $(3x - 3)(5x + 6)$ $(3x - 3)(5x + 6)$

- The cost of printing advertising flyers for a school play is represented by the function C(f) = 0.80f + 10.00, where C is total cost in dollars and f is the number of flyers.
 - a) If C(f) = 86.00, determine the value of f. Explain what this situation means.

[3 points]

b) Does this function represent discrete or continuous data? Explain.

Write the equation, in the form Ax + By + C = 0, of the line that passes through the [3 points] points (4,5) and (-6,10).

$$Slope = \frac{10-5}{-6-4} = \frac{5}{-10} = -\frac{1}{2} \stackrel{\text{(2)}}{=}$$

$$y = -\frac{1}{3}x + b$$

$$5 = -\frac{1}{3}(4) + b \stackrel{\text{(2)}}{=}$$

$$5 = -2 + b$$

$$7 = b \stackrel{\text{(2)}}{=}$$

$$7 + 2y - 14 = 0 \stackrel{\text{(2)}}{=}$$

40. A trapezoid is defined as a quadrilateral with exactly one pair of parallel sides. Show that the points A(-3,-1), B(-2,6), C(2,8), and D(7,4) can be joined to form a trapezoid.

$$\frac{1}{2}$$
 $\frac{1}{AB} = \frac{6-1}{2-3} = \frac{7}{1} = 7$

$$\frac{1}{2} m_{BC} = \frac{8-6}{2--2} = \frac{2}{4} = \frac{1}{2}$$

$$\frac{1}{2}$$
 m_{CD} = $\frac{4-8}{7-2}$ = $-\frac{4}{5}$

$$(\frac{1}{2})^{2} m_{AD} = \frac{4-1}{7-3} = \frac{5}{10} = \frac{1}{2}$$

BC | AD since slopes are the same.

2) ABHCD ... different slopes.

(2) ABCD is a trapezoid because it has exactly one pair of parallel sides.

41. Solve:
$$\begin{cases} \frac{3}{2}x - 2y = -8 \\ 4x + 3y = -13 \end{cases} \rightarrow 2(\frac{3}{2}x) - 2(2y) = 2(-8)$$

$$3x - 4y = -16$$

$$\frac{25x}{a5} = -100 \left(\frac{1}{2}\right)$$

$$4(-4) + 3y = -13 \left(\frac{1}{2}\right)$$

$$-16 + 3y = -13$$

$$3y = -13 + 16$$

$$3y = \frac{3}{3}$$

$$(-4, 1) \left(\frac{1}{2}\right)$$

$$y = 1$$

1201 Common Mathematics Assessment - June 2013 Answer Sheet

Name	
	•
Mathematics Teacher:	

1.	Α	В	C	(D)
2.	A	В	©	D
3.	(A)	В	С	D
4.	(A)	В	С	D
5.	A	(B)	С	D
6.	Α	B	C	D
7.	Α	В	C	D
8.	(A)	В	C	D
9.		В	С	(D)
10.	A A	В	(C)	D
11.	(A)	В	© C	D
12.	A A	В	(c)	D
13.	Α	В	(c)	D
14.	Α	В	0	D
15.	A	В	C	D
16.	Α	В	С	(b)
17.	A	В	С	$(\tilde{\mathbb{D}})$
18.	(\widehat{A})	В	С	D
19.	A	B	С	D
20.	A	В	С	(D)
21.	A	В	С	D
22.	A	В	С	D
23.	A	B	С	D
24.	Α	В	С	(D)
25.	Α	В	(C)	D
26.	Α	В	C	D
27.	A	\bigcirc	С	D
28.	(A)	В	С	D